Abstract

Human erythrocytes were separated into four density (age) groups representing the top 10% (young), bottom 10% (old), and two middle fractions of 40% each (intermediary ages). When these erythrocytes of different age groups were treated with the low levels of a purified basic phospholipase A 2 from Agkistrodon halys blomhofii, under conditions where little or no hemolysis occurred, the optimum extent of phosphatidylcholine (PC) hydrolysis in all age groups was the same, but interestingly, the rate of its hydrolysis was two to three times faster in the older cells compared to younger erythrocytes. On the other hand, hydrolysis of phosphatidylethanolamine (PE) of younger erythrocytes by the phospholipase A 2 was negligible under the particular experimental conditions. However, in erythrocytes of older age groups, both the rate and extent of PE hydrolysis by the enzyme increased in a distinctive fashion. Concomitant with the above pattern of PC and PE hydrolysis, the shape changes in the erythrocytes also were different; whereas all older erythrocytes became echinocytic only two-thirds of the younger erythrocytes showed a similar shape change. These observations firmly establish that during in vivo aging of normal erythrocytes in circulation significant changes in the structural organization of membrane phospholipids take place. Importance of this phenomenon in membrane phospholipid asymmetry studies and in the elimination of senescent cells also is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call