Abstract
Pure oxygen is proposed for wastewater treatment due to its advantages over conventional air aeration. This study investigates a Pure Oxygen-based Membrane Aerated Biofilm Reactor (PO-MABR) for the first time under various operating conditions. The PO-MABR employs a gas-permeable membrane for direct diffusion of low-pressurized pure oxygen to the biofilm, ensuring exceptional carbon and nitrogen removal. The effectiveness of PO-MABR was investigated by varying operational conditions, including temperature, carbon-to-nitrogen ratio, gas pressure, and flow rate. Results indicate superior performance, with a 97% chemical oxygen demand removal and 19% higher total nitrogen removal than Air-Ventilated MABR (A-MABR) due to thicker biofilm and unique microbial structures in PO-MABR. Also, PO-MABR demonstrated resilience to low temperatures and effectively treated both high and low-strength wastewater. The findings emphasize the efficiency of PO-MABR in wastewater treatment, advocating for its adoption due to superior carbon and nitrogen removal across diverse operational conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.