Abstract
One of the possible functions of lung surfactant protein B (SP-B), an hydrophobic membrane-associated saposin-like protein, is to reduce the alveolar surface tension by promoting insertion of phospholipids into the air/liquid interface of the lung. SP-B is a covalent homodimer; Cys48 of two polypeptides form an intermolecular disulphide bond. In order to test whether dimerisation of SP-B is important for surfactant function, transgenic mice which express (Cys48Ser) human SP-B in a mouse SP-B null background were generated. In previous studies (Cys48Ser)SP-B showed a concentration-dependent in vitro activity, suggesting that it may form non-covalent dimers. Here (Cys48Ser)SP-B isolated from bronchoalveolar lavage of transgenic mice was studied at different concentrations by circular dichroism (CD) spectroscopy, pulsating bubble surfactometry, mass spectrometry and reversed-phase HPLC. The results indicate that (Cys48Ser)SP-B, both in a phospholipid environment and in organic solvents, is largely monomeric and exhibits low activity at concentrations lower than 1 -2 microM, while at higher concentrations it forms non-covalent dimers, which are nearly functionally equivalent to native SP-B in vitro. Furthermore, electrospray mass spectrometry showed that more dimers were found relative to the monomer when the polarity of the solvent was decreased, and when the concentration of SP-B increased. (Cys48Ser)SP-B also eluted earlier than native SP-B in reversed-phase HPLC. Taken together, these results indicate that a polar surface is buried upon dimerisation, thereby promoting formation of interchain ion pairs between Glu51-Arg52' and Glu51'-Arg52.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.