Abstract

Reaction of the melanotropin hormone analogs [Nle 4, D-Phe 7]-α-MSH and [Nle 4, D-Phe 7]-α-MSH(4–10), which were extended at their N-terminus by a thiol-functionalized spacer arm, with preformed liposomes containing thiol-reactive (phospho)lipid derivatives resulted in the aggregation of the vesicles and in a partial leakage of their inner contents. This aggregation/leakage effect, which was only observed when the peptides were covalently conjugated to the surface of the liposomes, was correlated with the fusion of the vesicles as demonstrated by the observed decrease in resonance energy transfer between probes in a membrane lipid mixing assay. A limited fusion was confirmed by monitoring the mixing of the liposome inner contents (formation of 1-aminonaphthalene-3,6,8-trisulfonic acid/ p-xylene bis(pyridinium bromide) complex). The membrane-active properties of the peptides could be correlated with changes in the fluorescence emission spectra of their tryptophan residue, which suggested that after their covalent binding to the outer surface of the liposomes they can partition within the core of the bilayers. A blue shift of 10 nm was observed for [Nle 4, D-Phe 7]-α-MSH which was correlated with an increase in fluorescence anisotropy and with changes in the accessibility of the coupled peptide as assessed by the quenching of fluorescence of its tryptophan residue by iodide (Stern–Volmer plots). These results should be related to the previously described capacity of α-MSH, and analogs, to interact with membranes and with the favored conformation of these peptides which, via a β-turn, segregate their central hydrophobic residues into a domain that could insert into membranes and, as shown here, trigger their destabilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.