Abstract

Let Γ = (N, v) be a cooperative game with the player set N and characteristic function v : 2N → R. An imputation of the game is in the core if no subset of players could gain advantage by splitting from the grand coalition of all players. It is well known that, for the linear production game, and the flow game, the core is always non-empty (and a solution in the core can be found in polynomial time). In this paper, we show that, given an imputation x, it is NP-complete to decide it is not a member of the core, in both games. The same also holds for Steiner tree game. In addition, for Steiner tree games, we prove that testing the total balacedness is NP-hard.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.