Abstract

Quinolinic acid (QA) is an excitotoxic metabolite of the kynurenine pathway of tryptophan metabolism produced in response to inflammation and oxidative stress. Lead (Pb) causes oxidative stress and thus may produce neurotoxicity by increasing QA production. We investigated the in vitro cytotoxic effects of Pb and QA and the protective effects of the NMDA receptor antagonist memantine. Primary cultures of embryonic hippocampal cells from Wistar rats were treated with different concentrations of Pb, QA, and Pb + QA with and without memantine. Cell viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Apoptosis was analyzed by flow cytometry after Annexin-V/propidium iodide staining. The numbers of immunostained neurons (with β3-Tubulin; Tuj1) and astrocytes (with glial fibrillary acidic protein) were counted. Pb at 20 μg/dL (0.97 μM) and QA at 500 nM concentrations showed significant cytotoxic effects, as evidenced by decreased cell viability, increased apoptosis, and a decrease in the number of both astrocytes and neurons. The combination of Pb and QA showed significant synergistic apoptotic effects at lower doses. Memantine (500 nM) was largely protective against the cytotoxic effects of both Pb and QA, suggesting that Pb's and QA's cytotoxicity involves NMDA receptor activation. Whereas the neuroprotection by memantine from QA-induced toxicity has been previously reported, this is the first study reporting the protection by memantine against Pb-induced cytotoxicity in cultured hippocampal cells. Protection by memantine against these neurotoxicants in vivo needs to be investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.