Abstract
Membrane-anchored Neuregulin beta1 sheds its ectodomain as soluble factors. Two proteases that belong to a disintegrin and metalloprotease (ADAM) family are known to cleave Neuregulin beta1. One is tumor necrosis factor-alpha converting enzyme (TACE/ADAM17). The other is Meltrin beta (ADAM19). Against our expectation that shedding by ADAM proteases occurs at the cell surface, here we found that Meltrin beta mediates the ectodomain shedding of Neuregulin beta1 in the Golgi apparatus. Meltrin beta was localized in and around the Golgi apparatus in developing sensory neurons. Subcellular fractionation revealed that Meltrin beta generated soluble Neuregulin beta1 in Golgi-enriched fractions while TACE-cleaved Neuregulin beta1 was recovered in lighter fractions. To examine whether Meltrin beta-mediated ectodomain shedding occurs in the Golgi apparatus in living cells, we took advantage of different diffusion properties of cleavage products from those of membrane-anchored precursor proteins. Fluorescence correlation spectroscopy (FCS) is the most sensitive method to determine milli approximately submillisecond diffusion in vivo. Protease-active Meltrin beta caused a shift in autocorrelation function in FCS of green fluorescent protein (GFP)-tagged Neuregulin beta1 in the Golgi apparatus, suggesting a conversion of Neuregulin beta1 molecules from membrane-anchored to soluble forms in that organelle. The Golgi apparatus is a site of processing Neuregulin beta1 by Meltrin beta.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.