Abstract

To better understand the origin, migration, and evolution of melts in the lithospheric mantle and their roles on the destruction of the North China Craton (NCC), we conducted a petrological and geochemical study on a quartz-bearing orthopyroxene-rich websterite xenolith from Hannuoba, the NCC, and its hosted melt and fluid inclusions. Both clinopyroxene and orthopyroxene in the xenolith contain lots of primary and secondary inclusions. High-temperature microthermometry of melt inclusions combined with Raman spectroscopy analyses of coexisting fluid inclusions shows that the entrapment temperature of the densest inclusions was ~1215°C and the pressure ~11.47 kbar, corresponding to a depth of ~38 km, i.e. within the stability of the spinel lherzolite. Intermediate pressure inclusions probably reflect progressive fluid entrapment over a range of depths during ascent, whereas the low-pressure inclusions (P < 2 kbar) may represent decrepitated primary inclusions. In situ laser-ablation ICP-MS analyses of major and trace elements on individual melt inclusions show that the compositions of these silicate melt inclusions in clinopyroxene and orthopyroxene are rich in SiO2, Al2O3, and alkalis but poor in TiO2 and strongly enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs), with negative anomalies of high-field strength elements (HFSEs). These characteristics suggest that the silica-rich melts could be derived from the partial melting of subducted oceanic slab. Therefore, this kind of quartz-bearing orthopyroxene-rich websterite may be produced by interaction between the slab-derived melts with the mantle peridotite. This study provides direct evidence for the origin, migration, and evolution of melts in the lithospheric mantle, which may play an important role in the destruction of the NCC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call