Abstract

AbstractMelting phase relations of model carbonated peridotite in the system CaO‐MgO‐Al2O3‐SiO2‐CO2 from 2 to 3 GPa are reported. Experimentally produced melts, which are model carbonatites, with approximately 36–40 wt % CaO, 12–17 wt % MgO, 0.2–1.5 wt % Al2O3, 1–4 wt % SiO2, and 40–42 wt % CO2 (carbon dioxide) are present at all pressures investigated. At 2.8 and 3 GPa, carbonatitic melts are seen experimentally at temperatures that are very close to the vapor‐free (CO2) peridotite solidus and are found in equilibrium with forsterite, orthopyroxene, clinopyroxene, and garnet. Solidus phase relations with isobaric and pressure‐temperature invariant points, defining the so‐called carbonated peridotite solidus ledge, are also reported from 2.1 to 3 GPa. A divariant region exists from 2 to 2.6 GPa wherein two, compositionally different melts are present. In this region, these two melts, carbonatitic and silicate in composition, coexist with crystalline phase assemblage and free vapor. The silicate liquid has approximately 30–48 wt % SiO2 and approximately 6 to 20 wt % of dissolved CO2. The presence of carbonatitic and silicate liquids is interpreted to be due to liquid immiscibility. On the basis of melting phase relations reported here, we conclude that (a) the ledge is a feature along which model carbonatitic liquids are produced by reaction of silicates and CO2 vapor and (b) alkali‐free carbonatites and silicate melts can form through melt unmixing at depths of ~60–80 km in the Earth's mantle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.