Abstract

Sediments play a key role in subduction. They help control the chemistry of arc volcanoes and the location of seismic hazards. Here, we present a new model describing the fate of subducted sediments that explains magnetotelluric models of subduction zones, which commonly show an enigmatic conductive anomaly at the trenchward side of volcanic arcs. In many subduction zones, sediments will melt trenchward of the source region for arc melts. High-pressure experiments show that these sediment melts will react with the overlying mantle wedge to produce electrically conductive phlogopite pyroxenites. Modelling of the Cascadia and Kyushu subduction zones shows that the products of sediment melting closely reproduce the magnetotelluric observations. Melting of subducted sediments can also explain K-rich volcanic rocks that are produced when the phlogopite pyroxenites melt during slab roll-back events. This process may also help constrain models for subduction zone seismicity. Since melts and phlogopite both have low frictional strength, damaging thrust earthquakes are unlikely to occur in the vicinity of the melting sediments, while increased fluid pressures may promote the occurrence of small magnitude earthquakes and episodic tremor and slip.

Highlights

  • Sediments play a key role in subduction

  • The sediments are compacted and start to de-water at shallow depths (

  • The precise conditions for melting of the subducted sedimentary material will depend on pressure and the chemical composition of the sediment but melting may begin at temperatures as low as 675 °C6 (Fig. 1a)

Read more

Summary

Introduction

Sediments play a key role in subduction. They help control the chemistry of arc volcanoes and the location of seismic hazards. In many subduction zones this melting will occur at depths between fore-arc serpentinites and the source region of arc magmas. The range of calculated[9] subduction zone slab top temperatures show that in many subduction zones, hydrous sediments will begin to melt in the fore-arc region (Supplementary Fig. 1).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call