Abstract

Genomic DNA of higher organisms exists as extremely long polymers, while in bacteria and other lower organisms it is circular with no terminal base pairs. Temperature-induced melting of the DNA double helix by localized strand separation has been unattainable by molecular dynamic simulations due to more rapid fraying of the terminal base pairs in oligomeric DNA. However, local-sequence-dependent unfolding of the DNA double helix is extremely important for understanding various biochemical phenomena, and can be addressed by simulating a model polymeric DNA duplex. Here, we present simulations of polymeric B-DNA of sequence d(CGCGCGCGAATTCGCGCGCG)2 at elevated temperatures, along with its equivalent oligomeric constructs for comparison. Initiation of temperature-induced DNA melting was observed with higher fluctuations of the central d(AATT) region only in the model polymer. The polymeric construct shows a definite melting start site at the weaker A/T stretch, which propagates slowly through the CG rich regions. The melting is reflected in the hydrogen bond breaking, i.e. basepair opening, and by disruption of stacking interaction between successive basepairs. Melting at higher temperature of the oligomer, however, was only through terminal fraying, as also reported earlier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.