Abstract
We report dynamic Monte Carlo simulations of lattice polymers melting from a metastable chain-folded lamellar single crystal. The single crystal was raised and then melted in an ultrathin film of polymers wetting on a solid substrate, mimicking the melting observations made by using Atomic Force Microscopy. We observed that the thickness distribution of the single crystal appears quite inhomogeneous and the thickness increases gradually from facetted edges to the center. Therefore, at low melting temperatures, melting stops at a certain crystal thickness, and melting-recrystallization occurs when allowing crystal thickening; at intermediate temperatures, melting maintains the crystal shape and exhibits different speeds in two stages; at high temperatures, fast melting makes a melting hole in the thinnest region, as well as a saw-tooth-like pattern at the crystal edges. In addition, the linear melting rates at low temperatures align on the curve extrapolated from the linear crystal growth rates. The temperature dependence of the melting rates exhibits a regime transition similar to crystal growth. Such kinetic symmetry persists in the melting rates with variable frictional barriers for c -slip diffusion in the crystal as well as with variable chain lengths. Visual inspections revealed highly frequent reversals upon melting of single chains at the wedge-shaped lateral front of the lamellar crystal. We concluded that the melting kinetics is dominated by the reverse process of intramolecular secondary crystal nucleation of polymers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.