Abstract

We investigated the melting properties of natural mid-ocean ridge basalt (MORB) up to core–mantle boundary (CMB) pressures using laser-heated diamond anvil cell. Textural and chemical characterizations of quenched samples were performed by analytical transmission electron microscopy. We used in situ X-ray diffraction primarily for phase identification whereas our melting criterion based on laser power versus temperature plateau combined with textural analysis of recovered solidus and subsolidus samples is accurate and unambiguous. At CMB pressure (135 GPa), the MORB solidus temperature is 3970(±150) K. Quenched melt textures observed in recovered samples indicate that CaSiO3 perovskite (CaPv) is the liquidus phase in the entire pressure range up to CMB. The partial melt composition derived from the central melt pool is enriched in FeO, which suggests that such melt pockets may be gravitationally stable at the core mantle boundary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.