Abstract

This paper uses the geochemistry of primitive mafic lavas from the Rungwe volcanic province (southwestern Tanzania) to infer the source mineralogy and melting history. Post-Miocene mafic lavas from Rungwe include alkali basalts, basanites, nephelinites and picrites with up to 18.9 wt% MgO; nephelinites (>13.5% normative nepheline) are restricted to Kiejo volcano in the southern portion of the province. Rungwe lavas differ from most Western Rift volcanics in that they are not unusually potassic (K2O/Na2O ca. 0.40). Sparsely phyric mafic lavas contain phenocrysts and xenocrysts of plagioclase (An82–90), clinopyroxene (4.5–9.5 wt% Al2O3), and olivine (Fo79–88); one basanite contains a 1 mm xenocryst of apatite included in magnesian clinopyroxene. All samples have high abundances of incompatible elements (e.g., 0.7–2.2 wt% P2O5) and are enriched in REE relative to HFSE (Hf, Zr, Ti, Y), Cs, Ba, and K. Some incompatible element ratios are constant throughout the Rungwe suite (e.g., Zr/Nb, Sr/Ce, K/Rb), but other ratios are extremely variable and exceed the range measured in global Ocean Island Basalts (OIB) (e.g., Ba/Nb, Sm/Zr, La/Nb, Pb/Ce, Nb/U). The range in degree of silica saturation, and its excellent correlation with P2O5/Al2O3, indicate that the Rungwe suite records variable degrees of melting. Variations of individual incompatible trace element abundances in nephelinite and basanite samples suggest that the source contains metasomatic amphibole, ilmenite, apatite, and zircon. The Rungwe suite is interpreted as a series of low-percentage melts of CO2-rich peridotite at pressures that span the garnet-spinel transition. A geochemical comparison of Rungwe samples to lavas from other Western Rift volcanic centers requires that the source mineralogy varies along the rift axis, although each province is underlain by metasomatized peridotite. The incompatible trace element signatures of Western Rift lavas indicate that the source area is typically homogeneous on the scale of individual volcanoes, although lavas from each volcano reflect a range in degree of melting. Significantly, volcanoes with distinct geochemistry are always separated by major rift faults, suggesting that volcanic and tectonic surface features may correspond to metasomatic provinces within the subcontinental lithospheric mantle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.