Abstract

Thermodynamical stability of different variants of FePt nanoparticles has been studied using DFT molecular dynamics. The melting temperature and general stability at elevated temperatures have been estimated from both energy difference and atomic root-mean-square displacement functions. The investigated systems include multi-shell nanoparticles of iron and platinum with icosahedral symmetry and a magic number of atoms (55): iron-terminated Fe43Pt12 and platinum-terminated Fe12Pt43. Additionally, the cuboctahedral Fe24Pt31 particle, cleaved-out of the bulk structure, has been studied using the same procedure. Molecular dynamics simulations have been performed for a range of temperatures reaching above the melting points. The calculations confirmed high structural instability of the Fe-terminated nanoparticles and a strong stabilizing effect of the Pt-termination in the shell-type icosahedral particles. The advantage of the presented study is the self-consistency of the nanoparticle band structure in each time step, including magnetic interactions among local magnetic moments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.