Abstract
By use of constant energy molecular dynamics simulations, we have investigated the melting and freezing transitions in a two-dimensional system consisting of a constant density of classical particles interacting with a repulsive screened Coulomb (Yukawa) potential. In particular, we have investigated the role of an incommensurate substrate corrugation potential of sixfold symmetry on these transitions by probing the temperature dependence of the bond orientational order parameter (${\mathrm{\ensuremath{\psi}}}_{6}$) and the corresponding susceptibility (${\mathrm{\ensuremath{\chi}}}_{6}$). Other physical quantities such as energy, diffusion constant, and the density of local topological defects have been monitored through the transition region. In the absence of a corrugation potential the system shows a sharp melting transition. In the presence of a corrugation potential the transition temperature increases and the transition becomes smoother. In contrast to the corrugation-free case we find a broad peak in ${\mathrm{\ensuremath{\chi}}}_{6}$ above the transition temperature. We interpret this behavior in terms of the melting of a domain-wall solid. The detailed nature of this smooth transition depends on the degree of incommensurability. Relevance of these results to stage-2 graphite intercalation compounds is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.