Abstract
In this attempt, melting heat transfer characteristic of unsteady squeezed nanofluid flows in non-Darcy porous medium is interrogated. The nanofluid model incorporates Brownian diffusion and thermophoresis to characterize the heat and mass transport in the presence of thermal and solutal stratification. Similarity solutions are implemented to acquire nonlinear system of ordinary differential equations which are then evaluated using Homotopic technique. Flow behavior of involved physical parameters is examined and explanations are stated through graphs. We determine and analyze skin friction coefficient, Nusselt and Sherwood numbers through graphs. It is evident that larger melting parameter results in decrement in temperature field, while horizontal velocity enhances for higher melting parameter. Moreover, temperature and concentration fields are dominant for higher Brownian diffusion parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.