Abstract

The melting of a solid in contact with a hot fluid is quantified for the case in which a difference between the densities of the fluid and of the melted solid is able to drive vigorous compositional convection. A scaling analysis is first used to obtain a theoretical expression for the melting rate that is valid for a certain range of Stefan numbers. This expression is then compared with melting velocities measured in laboratory experiments in which ice and wax are melted when they are overlain or underlain by hot aqueous solutions. The melting velocities are consistent with the theoretical expression, and are found to depend on the heats of solution that are released when the melted solids mix with the solutions. The experiments also indicate that, for vigorous convection to occur during the melting of a floor, the unstable compositional buoyancy needs to be at least twice the stabilizing thermal buoyancy.An important geological situation in which melting occurs is when large volumes of basaltic magma are intruded into the Earth's continental crust. The theoretical and experimental results are used and extended to examine quantitatively the melting of the floor and walls of the magma chamber, and of crustal blocks that fall into the chamber.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.