Abstract

The phase diagram and melting behavior of the equimolar water-ammonia mixture have been investigated by Raman spectroscopy, x-ray diffraction, and visual observations from 295 K to 675 K and up to 9 GPa. Our results show non-congruent melting behavior of ammonia monohydrate (AMH) solid below 324 K and congruent melting at higher temperatures. The congruent melting is associated with the stability of a previously unobserved solid phase of AMH, which we named AMH-VII. Another, presumably water-rich, hydrate has also been detected in the range 4 GPa-7 GPa at 295 K on decompression of the high pressure disordered ionico-molecular alloy (DIMA) phase. Comparing our melting data to the literature suggests that non-congruent melting extends from 220 K to 324 K and that the solid phase that borders the fluid between 220 K and 270 K, called AMH-III, is not a proper phase of AMH but a solid solution of ammonia hemihydrate and ice. These results allow us to propose a revised and extended experimental phase diagram of AMH.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call