Abstract

Latent heat thermal energy storage was widely used to solve the problem of the intermittency in time and space for solar energy systems. To improve the energy storage efficiency, metal fins were typically further added to the shell side to increase thermal conductivity of phase change materials (PCMs). However, the positive effect of metal fins on enhancing heat transfer has not been fully utilized. In this paper, a novel design on angled fins was proposed to improve the thermal transport for PCMs in a shell-and-tube thermal storage unit. A numerical model was built and verified by comparing with experimental observations on the melting front evolution and temperature history. Bending angles for fins ranging from 0° to 75° were designed upwardly and downwardly and quantified on the melting front shape and location, melting time, and temperature field. Results demonstrated that melting rates were improved for the angled-fin cases other than cases with large bending angles. The case with a 10° downward angle exhibited as much as 55.41% reduction in full melting time. Simultaneously, the temperature uniformity can be improved by 20.00%. The novel design strategy on fin angles engendered a promising solution to enhancing thermal storage for emerging engineering applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call