Abstract

Imposing an intensity variable high static magnetic field during a traditional melting-solidification (MS) method has been used as a new method to prepare p-type bismuth antimony telluride thermoelectric materials in this work. On this basis, we present a systematic study of the nucleation, crystal orientation, microstructure, electrical and thermal transport properties of the obtained alloy ingots solidified under different magnetic field intensities. A c-axis alignment of bismuth antimony telluride in the direction perpendicular to the magnetic field, formation of BSTII nanorods, and a simultaneous optimization of the electrical and thermal transport properties have been observed. Consequently, an enhanced ZTmax=1.71 at 323K has been achieved in a polycrystalline Bi0.5Sb1.5Te3 sample solidified under a 2T magnetic field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.