Abstract

Global warming is having a profound impact on global ecological systems, and has inevitably induced changes in the cryosphere, one of the five layers of the earth. Major changes include the shrinking and reduction in the area and volume of both the mountain glaciers and the ice caps covering the North and South poles, and the melting of permafrost and thickening of the active frost layer. Swift changes in the cryosphere have inevitably in- duced ecological and environmental changes in its zone. While some of these changes are beneficial to mankind, such as an increase in water circulation, short term increases in water volumes and the enlargement of the culti- vatable area, others are extremely hazardous, like the flooding of lowlands caused by an increased sea level ele- vation, debris flow caused by glaciers, glacier lake bursts, undermined building safety caused by permafrost melting, the deterioration of alpine cold meadows, and the surface aridization and desertification of land. Tibet, having a major part of the cryosphere in China, is home to the most widely spread glaciers and permafrost, which play a vital role in regulating water resources, climate, environment and the ecological safety in China and Asia. However, due to global warming, the glaciers and permafrost in Tibet have recently changed dramatically, exhibiting shrinkage and melting, which threatens long-term water resources, and the ecological and environmental safety of China. Based on existing research, this paper discusses the relationship between global warming and the melting and shrinkage of the cryosphere. The results show that the cryosphere's melting and shrinkage in Tibet are the direct result of global warming. The melting of glaciers has led to a series of disasters, such as changes in river runoff, the heightened frequency of debris flows induced by glaciers and the outbursts of glacier lakes. The melting of the permafrost also resulted in a series of ecological and environmental problems in Tibet, such as the degradation and population succession of the alpine grassland and meadows, the aridization of the land surface, and the occurrence of freeze-thaw erosion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call