Abstract

The miscibility of linear polypropylene (L-PP) and long-chain branched polypropylene (LCB-PP) blends was studied in relation to the rheological behavior in shearing and elongational deformations of the blends. The rheological properties of four commercial L-PPs with different molecular weights were studied by adding 10, 25, 50, and 75 wt% of LCB-PP to L-PP. The linear viscoelastic properties such as complex viscosity and weighted relaxation spectrum were determined as functions of LCB-PP content. According to the obtained rheological data, the LCB-PP showed a higher zero-shear viscosity and a longer relaxation time than the L-PPs. The linear viscoelastic properties showed an increase in the molecular weight and branched content of the L-PP with a reduction in miscibility. Furthermore, good predictions of linear viscoelastic properties for miscible and immiscible blends were achieved by applying the Palierne model. In uniaxial elongational tests, the L-PP showed no strain hardening behavior. By contrast, the addition of 10 wt% LCB-PP to L-PP resulted in strain hardening behavior at all strain rates. Hence, the strain hardening behavior of the blends was enhanced with LCB-PP content. The elongational viscosity data of the L-PP and LCB-PP and their blends were studied by employing the Molecular Stress Function (MSF) model which could predict the strain hardening behavior of the blends.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.