Abstract
An experimental study of high-density polyethylene (HDPE) composites filled with talc (0–15 wt.%) was carried out to investigate the rheological properties. The apparent melt viscosity, melt density, and die-swell ratio (B) of the composites were measured at constant shear stress and constant shear rate by using a melt flow indexer and capillary rheometer. The experimental conditions were set to a temperature range from 190 to 220 °C for both apparatuses whereas a load range from 5 to 12.16 kg was selected for melt flow indexer and shear rate range from 1 to 10000 s−1 for capillary rheometer. The initial study showed that the talc particulates did not influence the melt viscosity compared with the neat HDPE but decreased the elasticity of the polymer system. The HDPE/talc systems obeyed power-law model in shear stress–shear rate variations and were shear thinning, meanwhile, the die-swell increased with an increased wall shear rate and shear stress. The melt density of the composites increased linearly with an increase of the filler weight fraction and decreased with the increase of the testing temperature. The talc-HDPE composites showed compressible in the molten state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.