Abstract
In directed energy deposition, the melt pool temperature is closely related to the microstructures and defects, thus significantly affecting the final part quality. Multiple factors such as laser power, scanning speed, spot size, and powder feed rate can affect the melt pool temperature profiles. It is critical to determine the melt pool temperature distribution and history during the material deposition. However, the high-energy beam and metal material interaction in the molten pool is a complex coupled process with physical metallurgy changes, which makes it challenging to use the experimental methods to investigate the melt pool temperature distribution under different processing parameters. To address this challenge, we establish two data-driven models using machine learning based on extreme gradient boosting (XGBoost) and long short-term memory (LSTM) correspondingly to predict the melt pool temperature in a thin-wall structure deposition. The experimental results have shown that the prediction of LSTM is sufficiently accurate and fast for in-situ correction. The proposed predictive models are expected to facilitate DED process optimization in melt pool thermal-related properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.