Abstract
Selective laser melting (SLM) involves periodic processes of rapid temperature rise and drop, so it is of great interest in evaluating the quality of the melted powders by real-time thermal information. In this study, a LumaSense MCS640 thermal imaging camera in coaxial system, which can track the location of melt pool, was used to real-time monitor the surface temperature during Ti-6Al-4V forming and predict an average melt width by extracting the boundary of the melt pool in each infrared image. The characteristics of the temperature gradient distribution around a melt pool instead of the temperature itself was analyzed, the boundary of a melt pool was determined then by the maximum (or minimum) temperature gradient point in space. Straight melt samples were obtained by a fixed laser scanning direction in this study, the extracted boundaries of the moving melt pool in the direction perpendicular to the laser scanning direction were compared with the measured melt width from a microscope. A best width divergency between the prediction and measurement around 5% is achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.