Abstract

Selective Laser Sintering/Selective Laser Melting (SLS/SLM) is one of Additive Manufacturing (AM) processes that utilize layer by layer powder deposition technique and successive laser beam irradiation based on Computer Aided Design (CAD) data. During laser irradiation on metal powders, melt pool was formed, which then solidified to consolidated structure. Therefore, melt pool is an important behavior that affects the final quality of track formation. The study investigates the melt pool behavior through visualization of the consolidation process during the single track formation on the first layer. In order to understand the transformation process of metal powder to consolidated structure and mechanism involved, high speed camera was used to monitor the process. Yb:fiber laser beam was irradiated on metal powder at maximum power of 150W. The laser processing parameters such as laser power, scan speed and layer thickness were varied in order to investigate their influence on the consolidation process. The result shows the size of melt pool increased with laser power and decreasing with increment in scan speed. Furthermore, with the increase of layer thickness, melt pool formation was unstable with chaotic movement. Significant amount of molten powder splattering was recorded from the melt pool. At high layer thickness also, the molten powder formed spherical shaped and the solidified molten powder failed to wet with the substrate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call