Abstract

Composites of poly(caprolactone) (PCL) and 0.5 wt.% multiwalled carbon nanotubes (MWCNT) were prepared by melt-mixing in a conical twin-screw micro-compounder by varying the rotation speed between 25 and 400 rpm at constant mixing time and temperature. The state of dispersion analyzed by light microscopy was improved with increasing rotation speed but levels off starting at about 100 rpm. PCL molecular weight as well as crystallization and melting behavior did show only insignificant difference when varying the rotation speed. Concerning melt rheological properties, storage modulus G′ and complex viscosity η* at 0.1 rad/s increased up to a rotation speed of about 75 rpm illustrating improved dispersion. When further increasing the speed G′ and η* decreased which was attributed to more pronounced nanotube shortening as quantified by TEM measurements. Both effects – improved dispersion and nanotube shortening – are also reflected in the electrical resistivity values of compression molded samples which show a minimum of resistivity at the rotation speed of 75 rpm corresponding to a specific mechanical energy input of 0.47 kWh/kg.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.