Abstract
The behaviour of tungsten (W) plasma-facing components (PFCs) has been investigated in the plasma edge of the TEXTOR tokamak to study melt-layer ejection, macroscopic tungsten erosion from the melt layer as well as the changes of material properties such as grain-size and abundance of voids or bubbles. The parallel heat flux at the radial position of the exposed tungsten tile in the plasma ranges around q‖ ∼ 45 MW m−2 causing samples to be exposed at an impact angle of 35° to 20–30 MW m−2. Locally the temperature reached up to 6000 K, high levels of evaporation and boiling are causing significant erosion in the form of continuous fine spray or droplet ejection. The amount of fine-spray tungsten emission depends strongly on the material properties: in the case of the tungsten–tantalum alloy the effect of spraying and droplet emission is significantly higher at even low temperatures when compared with regular tungsten or even ultra-high purity tungsten which shows almost no spraying at all. Differences in the material composition, grain structure and size may be related to the different evolution of macroscopic erosion. In addition the re-solidified material is studied and strong differences in terms of re-crystallized grain size and evolution of the grain structure and grain orientation are observed. The build up of large voids has been observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.