Abstract

The exhaust of power and particles is regarded as a major challenge in view of the design of a magnetic confinement nuclear fusion demonstration power plant (DEMO). In such a reactor, highly loaded plasma facing components (PFCs), like the divertor targets, have to withstand both severe heat flux loads and considerable neutron irradiation. Existing divertor target designs make use of monolithic tungsten (W) and copper (Cu) material grades that are combined in a PFC. Such an approach, however, bears engineering difficulties as W and Cu are materials with inherently different thermomechanical properties and their optimum operating temperature windows do not overlap. Against this background, W–Cu composite materials are promising candidates regarding the application to the heat sink of highly loaded PFCs. The present contribution summarises recent results regarding the manufacturing and characterisation of such W–Cu composite materials produced by means of liquid Cu melt infiltration of open porous W preforms. On the one hand, this includes composites manufactured by infiltrating powder metallurgically produced W skeletons. On the other hand, W–Cu composites based on textile technologically produced fibrous reinforcement preforms are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.