Abstract
AbstractMelt index is considered an important quality variable determining product specifications. Reliable prediction of melt index (MI) is crucial in quality control of practical propylene polymerization processes. In this paper a least squares support vector machines (LS‐SVM) soft‐sensor model of propylene polymerization process is developed to infer the MI of polypropylene from other process variables. Considering the use of a SSE cost function without regularization might lead to less robust estimates; the weighted least squares support vector machines (weighted LS‐SVM) approach of propylene polymerization process is further proposed to obtain a robust estimation of melt index. The performance of standard SVM model is taken as a basis of comparison. A detailed comparison research among the standard SVM, LS‐SVM, and weighted LS‐SVM models is carried out. The research results confirm the effectiveness of the presented methods. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 285–289, 2006
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.