Abstract

Melt inclusions in quartz phenocrysts from a single clast of pumice near the base of the plinian pumice fall of the Bishop Tuff were studied to test ideas concerning separation of melt and crystals in silicic magmas. Ten analyzed inclusions from the pumice clast are of high silica rhyolite composition with very low contents of the highly compatible elements Ba, Sr, and Eu, consistent with extensive fractionation. The concentrations of U, La, Ce, Mg, and Ca of these ten melt inclusions vary considerably as determined by ion microprobe. Petrologic considerations indicate that uranium is an incompatible element with a maximum bulk partition coefficient D of about 0.2 and that the evolution of the uranium content of the melt was controlled by crystallization of the magma. A minimum of 33 wt% perfect fractional crystallization is required to explain the observed range in uranium. However, only 17 wt% crystals occurred in the pumice clast. The greater calculated fraction of crystals requires significant separation of crystals and melt before the eruption of the plinian pumice fall in spite of the fact that crystal mixing (settling, etc.) did not occur in the Bishop magma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.