Abstract
An in-house built hybrid manufacturing device, combining the pros of melt electrowriting (MEW) and melt electrospinning (MES), is firstly proposed to produce a reinforced nonwoven fabric applied in drug delivery systems. MEW is used to print regular PCL lattice, followed by the deposition of a PCL nonwoven fabric loaded with drugs, forming a MEW/MES composite scaffold. Tensile test results suggest that after combining with MEW lattice, the strength of the composite scaffold can have a two-fold improvement and the elongation to break can increase up to 900%. Solvent vapor annealing is applied to adjust drug release rate through controlling the crystallinity of PCL. Although the increased crystallinity restrained drug release, a shish-kebab-shaped fiber structure formed by the annealing facilitates drug release. This MEW-based hybrid printing method can greatly enhance the freedom of making complex scaffold and extend to other nanotechnologies to fabricate reinforced scaffold as well.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.