Abstract

The flow of molten metal on the front wall of a laser generated welding keyhole has been observed by high speed photography, optically measured by mapping the flow of ripples on the liquid surface and theoretically calculated. A clear downward flow can be observed and measured by a Particle Image Velocimetry algorithm. A theoretical calculation of the melt thickness on the keyhole front is also presented. Results indicate that the thickness of the liquid on the keyhole front is similar to that of the resolidified layer found in micrographs of the front if the laser is suddenly turned off. The measured surface ripple flow speeds are between two and four times as high as the theoretical average fluid flow rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.