Abstract

ABSTRACTRecent work has shown that authentic and half cadences can be identified via harmonic features in both supervised and unsupervised settings, suggesting that humans may use such cues in perceiving and learning cadences. The present study tests melodic features in these same tasks. Both n-gram models and profile hidden Markov models of melodic patterns are used for supervised classification and unsupervised learning of cadences in Classical string quartets. Success is achieved at the supervised task but not the unsupervised task, indicating that melodic cues would help in perceiving cadences but not in learning to perceive them.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.