Abstract
Abstract This paper shows that meaningful interpretations for Mellin convolutions of products and ratios involving two, three or more functions, can be given through statistical distribution theory of products and ratios involving two, three or more real scalar random variables or general multivariate situations. This paper shows that the approach through statistical distributions can also establish connection to fractional integrals, reaction-rate probability integrals in nuclear reaction-rate theory, Krätzel integrals and Krätzel transform in applied analysis, continuous mixtures, Bayesian analysis etc. This paper shows that the theory of Mellin convolutions, currently available for two functions, can be extended to many functions through statistical distributions. As illustrative examples, products and ratios of generalized gamma variables, which lead to Krätzel integrals, reaction-rate probability integrals, inverse Gaussian density etc, and type-1 beta variables, which lead to various types of fractional integrals and fractional calculus in general, are considered.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.