Abstract

Allergic contact dermatitis (ACD) and atopic dermatitis (AD) are the most common human skin disorders. Although corticosteroids have been widely used to treat ACD and AD, the side effects of corticosteroids encourage researchers to explore new immunoregulatory treatments. Here, an immunomodulatory approach based on lipid nanoparticles carrying α-helical configurational melittin (α-melittin-NP) is developed to overcome T cell-mediated inflammatory reactions in an oxazolone (OXA)-induced contact hypersensitivity mouse model and OXA-induced AD-like mouse model. Intradermal injection of low-dose α-melittin-NPs prevents the skin damage caused by melittin administration alone and efficiently targeted lymph nodes. Importantly, melittin and α-melittin-NPs restrain RelB activity in dendritic cells (DCs) and further suppresses dendritic cell activation and maturation in lymph nodes. Furthermore, low-dose α-melittin-NPs leads to relief of antigen recognition-induced effector T cell arrest in the dermis and inhibited allergen-specific T cell proliferation and activation. Significantly, this approach successfully controls Th1-type cytokine release in the ACD model and restricts Th2-type cytokine and IgE release in the AD-like model. Overall, intradermal delivery of low-dose α-melittin-NPs efficiently elicits immunosuppression against T cell-mediated immune reactions, providing a promising therapeutic strategy for treating skin disorders not restricted to the lesion region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.