Abstract

BackgroundMelioidosis is a tropical infectious disease which is being increasingly recognised throughout the globe. Infection occurs in humans and animals, typically through direct exposure to soil or water containing the environmental bacterium Burkholderia pseudomallei. Case clusters of melioidosis have been described in humans following severe weather events and in exotic animals imported into melioidosis endemic zones. Direct transmission of B. pseudomallei between animals and/or humans has been documented but is considered extremely rare. Between March 2015 and October 2016 eight fatal cases of melioidosis were reported in slender-tailed meerkats (Suricata suricatta) on display at a Wildlife Park in Northern Australia. To further investigate the melioidosis case cluster we sampled the meerkat enclosure and adjacent park areas and performed whole-genome sequencing (WGS) on all culture-positive B. pseudomallei environmental and clinical isolates.ResultsWGS confirmed that the fatalities were caused by two different B. pseudomallei sequence types (STs) but that seven of the meerkat isolates were highly similar on the whole-genome level. Used concurrently with detailed pathology data, our results demonstrate that the seven cases originated from a single original source, but routes of infection varied amongst meerkats belonging to the clonal outbreak cluster. Moreover, in some instances direct transmission may have transpired through wounds inflicted while fighting.ConclusionsCollectively, this study supports the use of high-resolution WGS to enhance epidemiological investigations into transmission modalities and pathogenesis of melioidosis, especially in the instance of a possible clonal outbreak scenario in exotic zoological collections. Such findings from an animal outbreak have important One Health implications.

Highlights

  • Melioidosis is a tropical infectious disease which is being increasingly recognised throughout the globe

  • In the current investigation, we used high-resolution whole-genome sequencing (WGS) concurrently with detailed pathology data to investigate a cluster of fatal B. pseudomallei infections in slender-tailed meerkats

  • While more traditional B. pseudomallei molecular fingerprinting schemes can often confound inferences about infection aetiology and transmission due to the exceedingly high rate of genetic recombination, our findings demonstrate the epidemiological insights that can be gained from high-throughput WGS

Read more

Summary

Introduction

Melioidosis is a tropical infectious disease which is being increasingly recognised throughout the globe. Case clusters of melioidosis have been described in humans following severe weather events and in exotic animals imported into melioidosis endemic zones. Melioidosis is a disease of significant public health importance throughout much of the tropics, most notably in Southeast Asia and Northern Australia where it is considered highly endemic in both humans and animals [1]. The majority of cases arise through direct percutaneous exposure to the infections aetiological agent, Burkholderia pseudomallei [2], though case reports associated with severe weather events [3] and contaminated drinking supplies [4] have implicated inhalation and ingestion as potentially significant sources of infection. Surveillance from tropical Northern Australia and Thailand has shown that sheep [15], camels [16] and alpacas [17] readily succumb to melioidosis, while goats have diverse presentations similar to humans [12, 18] and pigs can often have asymptomatic internal infections [19]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.