Abstract

The purpose of this paper is to develop a speaker recognition system which can recognize speakers from their speech. The proposed system would be text dependent speaker recognition system means the user has to speak from a set of spoken words. Mel. Frequency cepstral coefficient is used in order to extract the features of speakers from their speech signal while VQ (LBG) is used for design of codebook from extracted features. In pattern matching we derive the VQ distortion between the utterances of unknown speaker to codebooks of known speaker. We have used Euclidean distance to compute VQ distortion. The system is implemented by using TIMIT database with 630 speakers having 10 speech files each. In our project we have chosen 30 speakers as well as 100 speakers from this database. The comparison of speaker recognition performance between 30 speakers and 100 speakers are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.