Abstract

MELCOR is an integrated thermal hydraulics, accident progression, and source term code for reactor safety analysis that has been developed at Sandia National Laboratories for the United States Nuclear Regulatory Commission (NRC) since the early 1980s. Though MELCOR originated as a light water reactor (LWR) code, development and modernization efforts have expanded its application scope to includ e non-LWR reactor concepts. Current MELCOR development efforts include providing the NRC with the analytical capabilities to support regulatory readiness for licensing non-LWR techno logies under Strategy 2 of the NRC?s near- term Implementation Action Plans. Beginning with the Next Generation Nuclear Project (NGNP), MELCOR has undergone a range of enha ncements to provide analytical capabilities for modeling the spectrum of advanced non-LWR concepts. This report describes the generic plant model developed to demonstrate MELCOR capabilities to perform heat pipe reactor (HPR) safety evaluations. The generic plant mode l is based on a publicly-available Los Alamos National Laboratory (LANL) Megapower design as modified in the Idaho National Laboratory (INL) Design A description. For plant aspects (e.g., reactor building size and leak rate) that are not described in the LANL and INL references , the analysts made assumptions needed to construct a MELCOR full-plant model. The HP R uses high assay, low-enrichment uranium (HALEU) fuel with steel cladding that uses heat pipes to transfer heat to a secondary Brayton air cycle. The core region is surrounded by a stainless-steel shroud, alumina reflector, core barrel and boron carbide neutron shield. The reactor is secured inside a below-grade cavity, with the operating floor located above the cavity. Example calculations are performed to show the plant response and MELCOR capabilities to characterize a range of accident conditions. The accidents selected for evaluation consider a range of degraded and failed modes of operation for key safety functions providing re activity control, the primary and secondary system heat removal, and the effectiveness of th e confinement natural circulation flow into the reactor cavity (i.e., a flow blockage).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.