Abstract

5-Fluorouracil (5-FU) has been established as the first-line chemotherapy for advanced colorectal cancer (CRC); however, acquired chemoresistance is often the cause of poor therapeutic response. Melatonin is a molecule that is associated with circadian rhythms. Although antitumor effects of melatonin have been shown, the underlying mechanism(s) for its activity and its effect, if any, in chemoresistant CRC has not been studied. We aimed to investigate antitumor effects of melatonin, and more specifically its effect on molecular mechanisms in 5-FU resistant CRC cells. The cell growth was assessed in CRC cells, patient-derived organoids and 5-FU resistant CRC cells after treatments with melatonin. In addition, the expression of thymidylate synthase (TYMS) and microRNAs (miRNAs) that are targeting TYMS were examined. We observed that melatonin inhibited the cell growth in 5-FU resistant CRC cells. In addition, we found that melatonin significantly promoted apoptosis. Furthermore, a combination of melatonin and 5-FU markedly enhanced 5-FU-mediated cytotoxicity in 5-FU resistant cells. In addition, melatonin significantly decreased the expression of TYMS. Interestingly, this effect was manifested through the simultaneous increase in the expression of miR-215-5p, for which, TYMS serves as the direct downstream target for this miRNA. Melatonin facilitates overcoming 5-FU resistance through downregulation of TYMS. Melatonin may serve as a potential therapeutic option on its own, or in conjunction with 5-FU, in the treatment of patients with advanced or chemoresistant CRC.Melatonin inhibits the growth of 5-FU resistant colorectal cancer (CRC) cells through upregulation of miR-215-5p and a concomitant downregulation of TYMS. Melatonin may serve as a potential therapeutic option in the treatment of patients with advanced or chemoresistant CRC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.