Abstract
In preeclampsia, placental production of lipid peroxides is abnormally increased, while placental glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities are decreased. Administration of melatonin, a powerful scavenger of oxygen free radicals, also may protect the placenta from free radical-induced damage by increasing the activity of antioxidant enzymes. To test this hypothesis we administered melatonin to pregnant women before they underwent voluntary interruption of pregnancy between 7 and 9 wk of gestation. Melatonin (6 mg) was administered orally at 12:00 hr, and samples of chorion and maternal blood were obtained at the time of the procedure, 1, 2 or 3 hr later. We measured the melatonin concentration in maternal serum and activities of GSH-Px and SOD and levels of melatonin in chorionic homogenates. Melatonin administration was reflected by markedly increased melatonin concentrations in maternal serum and in chorion, with peak levels achieved 1 hr after melatonin administration (serum, 46.87 +/- 10.87 nM/L; chorionic homogenate, 4.36 +/- 1.56 pmol/mg protein). Between 1 and 3 hr after melatonin administration, GSH-Px activity in chorionic homogenates increased significantly (P < 0.001), with peak levels occurring at 3 hr (51.68 +/- 3.22 mU/mg protein per min, 137.3% of GSH-Px activity in untreated control subjects). No significant changes in chorionic SOD activity occurred during the 3-hr post-administration period. These results indicate that exogenous melatonin increases GSH-Px activity in the chorion and thereby may protect indirectly against free radical injury. Melatonin could be useful in treating preeclampsia and possibly other clinical states involving excessive free radical production, such as intrauterine fetal growth retardation and fetal hypoxia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.