Abstract

Postmenopausal osteoporosis (OP) is one of the most common bone diseases that affects millions of aging women. Reduced osteogenesis and increased oxidative stress have been implicated in bone marrow mesenchymal stem cells (BMMSCs) derived from OP patients. Melatonin has shown positive effects on osteoblast differentiation and bone formation; however, it was unknown whether melatonin could restore OP-impaired osteogenic potential of BMMSCs and what the underlying mechanisms entailed. The objective of this study is to investigate (1) whether melatonin can restore the impaired osteogenic potential of OP BMMSCs by preserving their antioxidant functions, and if so, (2) whether intravenous administration of melatonin can prevent OP-induced bone loss in ovariectomized (OVX) rats. Ovariectomies were performed in female rats and BMMSCs were isolated from the osteoporotic rats 3 months later. In vitro treatment with melatonin successfully improved the osteogenic differentiation of OP BMMSCs, as evidenced by increased levels of matrix mineralization and osteoblast-specific genes. In melatonin-treated OP BMMSCs, intracellular oxidative stress was significantly attenuated, while levels of intracellular antioxidant enzymes were noticeably up-regulated – particularly superoxide dismutase 2 (SOD2) and glutathione peroxidase 1 (GPX1). Silent information regulator type 1 (SIRT1) was involved in the melatonin-mediated recovery of osteogenesis and antioxidant functions. Meanwhile, in vivo injections of melatonin via the tail vein successfully ameliorated the bone micro-architecture in ovariectomized rat femurs. Further experiments confirmed that BMMSCs derived from melatonin-treated OVX rats exerted well-preserved antioxidant properties and osteogenic potential. Our findings demonstrate that the administration of melatonin is a promising strategy for treating patients with postmenopausal OP by preserving the antioxidant properties and osteogenic potential of their BMMSCs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call