Abstract

IntroductionA remarkable aspect of bird migration is its nocturnality, particularly common in Passeriformes. The switch in activity from purely diurnal to also nocturnal is evident even in caged birds that during migratory periods develop an intense nocturnal restlessness, termed Zugunruhe. The mechanisms that control this major change in activity are mostly unknown. Previous work with Sylvia warblers suggested an involvement of melatonin, a hormone associated with day-night cycles in most vertebrates. In a recent study we found no effects of melatonin administration on Zugunruhe during spring migration. However, previous studies indicated that the response to melatonin manipulation could differ between spring and autumn migration, which are in fact separate life history stages. Here we tested whether a non-invasive treatment with melatonin can alter Zugunruhe in wild garden warblers S. borin and blackcaps S. atricapilla subject to temporary captivity at an autumnal stopover site. Food availability in the cage (yes/no) was added as a second factor because previous work showed that it enhanced Zugunruhe.ResultsThe melatonin treatment significantly decreased the amount of Zugunruhe, while the availability of food only tended to increase the amount of Zugunruhe. Fuel deposits also had a strong effect on the amount of nocturnal activity: lean birds with a fat score of 1 showed significantly less Zugunruhe than fatter birds. The change in body mass during the time spent in the recording cage depended on food availability, but not on any of the other factors.ConclusionsThis study shows that the migratory programme of two Sylvia warblers can be manipulated by administration of exogenous melatonin and confirms that this hormone is involved in the control of migratory behaviour. To our knowledge, this is one of the first demonstrations that the autumn migratory programme can be altered by hormonal manipulation in migrating birds. The comparison with a similar study carried out with the same modalities during spring migration suggests that there are seasonal differences in the sensitivity of the migratory programme to hormonal factors. In birds breeding in the northern hemisphere, the importance of a timely arrival to the breeding sites could explain why the control of the migratory programme is more rigid in spring.

Highlights

  • A remarkable aspect of bird migration is its nocturnality, common in Passeriformes

  • The melatonin treatment significantly decreased the amount of Zugunruhe, while the availability of food only tended to increase the amount of Zugunruhe

  • This study shows that the migratory programme of two Sylvia warblers can be manipulated by administration of exogenous melatonin and confirms that this hormone is involved in the control of migratory behaviour

Read more

Summary

Introduction

A remarkable aspect of bird migration is its nocturnality, common in Passeriformes. We hypothesized that melatonin is involved in the switch between the nocturnal activity typical for migration and the diurnal pattern of activity shown during all other stages of their annual cycle (such as breeding, moulting and wintering) [8,9]. Following this hypothesis, we made two predictions that could be tested empirically: First, if the birds were induced to interrupt Zugunruhe during migration, one should observe an increase of circulating melatonin at the same time. Treatment with exogenous melatonin should reduce the intensity of Zugunruhe

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.