Abstract

Spermatogenesis, an intricate process occurring in the testis, is responsible for ongoing production of spermatozoa and thus the cornerstone of lifelong male fertility. In the testis, spermatogenesis occurs optimally at a temperature 2-4°C lower than that of the core body. Increased scrotal temperature generates testicular heat stress and later causes testicular atrophy and spermatogenic arrest, resulting in a lower sperm yield and therefore impaired male fertility. Melatonin (N-acetyl-5-methoxytryptamine), a small neuro-hormone synthesized and secreted by the pineal gland and the testis, is widely known as a potent free-radical scavenger; it has been reported that melatonin protects the testis against inflammation and reactive oxygen species generation thereby playing anti-inflammatory, -oxidative and -apoptotic roles in the testis. Nevertheless, the role of melatonin in the testicular response to heat stress has not been studied. Here, by employing a mouse model of testicular hyperthermia, we systematically investigated the testicular response to heat stress as well as the occurrence of autophagy, apoptosis and oxidative stress in the testis. Importantly, we found that pre-treatment with melatonin attenuated heat-induced apoptosis and oxidative stress in the testis. Also, post-treatment with melatonin promoted recovery of the testes from heat-induced damage, probably by maintaining the integrity of the Sertoli cell tight-junction. Thus, we for the first time provide the proof of concept that melatonin can protect the testis against heat-induced damage, supporting the potential future use of melatonin as a therapeutic drug in men for sub/infertility incurred by various testicular hyperthermia factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.