Abstract

BackgroundMorphine-induced hyperalgesia and tolerance significantly limits its clinical use in relieving acute and chronic pain. Melatonin, a pineal gland neurohormone, has been shown to participate in certain neuropsychopharmacological actions. The present study investigated the effect of melatonin on morphine-induced hyperalgesia and tolerance and possible involvement of protein kinase C (PKC)/N-methyl-D-aspartate (NMDA) pathway in melatonin-mediated.MethodsExperiments were performed on adult, male Sprague–Dawley rats. Melatonin (10 mg/kg, intraperitoneal, i.p.) or saline was administrated 10 min after morphine injection (10 mg/kg, subcutaneous, s.c.) each day for consecutive 14 days. Withdrawal threshold of the hindpaw to mechanical and thermal stimulation was measured before any drug administration and one hour after melatonin or saline on each designated test day. On the 15th day, thermal withdrawal was measured after s.c. morphine (20 mg/kg), but not melatonin, and morphine tolerance was measured and expressed by MPAE% (percent of maximal possible anti-nociceptive effect) of morphine. Levels of expression of protein kinase C gamma (PKCγ) and NMDA receptor subtype NR1 in spinal cord were detected by Western blotting.ResultsThe mechanical withdrawal threshold and thermal withdrawal latency decreased and shortened significantly (i.e., threshold decreased) in rats that received morphine treatment for two weeks compared with that in rats receiving saline. This morphine-induced mechanical and thermal hyperalgesia were greatly attenuated by co-administration of morphine with melatonin. The MPAE% representing morphine analgesic effect was reduced approximately 60% in rats that received morphine treatment. However, following the treatment of morphine with melatonin, the MPAE% was reduced only about 30%, comparing with those that received saline treatment as control. Administration of morphine alone resulted in significantly increased expression of PKCγ and NR1 proteins in the spinal cord. These increased levels of expression of PKCγ and NR1 were significantly inhibited by co-administration of morphine with melatonin.ConclusionsOur findings demonstrate that melatonin have potential to attenuate repetitive morphine-induced hyperalgesia and tolerance, possibly by inhibiting PKCγ and NR1 activities in the spinal cord.

Highlights

  • Morphine-induced hyperalgesia and tolerance significantly limits its clinical use in relieving acute and chronic pain

  • The treatment with morphine (10 mg/kg, s.c.) and saline (MOR-SAL) resulted in a progressive decreased withdrawal threshold to mechanical stimulation and shortened latency to heat stimulation during the post-injective 3–14 days. This is statistically significant compared with those in groups of saline-saline (SAL-SAL) and saline- melatonin (SAL-MT) (P < 0.001). Such increased mechanical and thermal sensitivity of animals following repetitive morphine treatment was greatly attenuated by coadministration of morphine with melatonin

  • The increased expression of Protein kinase C gamma (PKCγ) and NMDA receptor 1 (NR1) in the spinal cord of morphine exposed rats is inhibited by co-administration of morphine with melatonin. These results indicate that melatonin treatment can successfully alleviate morphine-induced hyperalgesia and tolerance probably through inhibition of PKCγ and NR1 activities in the spinal cord

Read more

Summary

Introduction

Morphine-induced hyperalgesia and tolerance significantly limits its clinical use in relieving acute and chronic pain. The present study investigated the effect of melatonin on morphine-induced hyperalgesia and tolerance and possible involvement of protein kinase C (PKC)/N-methyl-D-aspartate (NMDA) pathway in melatonin-mediated. Opioids such as morphine are effective analgesics that are widely used in relieving acute and chronic pain [1]. Studies have shown that activations of PKC and NMDA receptor in the spinal cord play critical roles in the development of morphine-induced hyperalgesia and tolerance [5,7,10,15,17]. Inhibition of PKC and/or NMDA receptor activities in the spinal cord may be able to effectively prevent the morphine-induced hyperalgesia and tolerance

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.