Abstract

Nitric oxide (NO) deficiency is associated with development of hypertension. We examined whether melatonin protects against the blood pressure increase is because of the restoration of the NO pathway. Spontaneous hypertensive rats (SHR) and control normotensive Wistar Kyoto (WKY) rats aged 4 weeks were assigned to four groups (N=6 for each group): untreated SHR and WKY, melatonin-treated SHR and WKY. Melatonin-treated rats received 0.01% melatonin in drinking water for 8 wks. All rats were sacrificed at 12 wk of age. SHR had higher blood pressure than WKY, which melatonin prevented. Plasma asymmetric dimethylarginine (ADMA) levels were elevated in SHR, combined with a reduction in plasma L-arginine to ADMA ratio (AAR). In the kidney, L-arginine, ADMA, and AAR were not different between SHR and WKY rats, whereas L-citrulline level was increased in SHR. Melatonin decreased plasma ADMA level and restored plasma AAR. Renal dimethylarginine dimethylaminohydrolase (DDAH, ADMA-metabolizing enzyme) activity was lower in SHR than WKY rats, which melatonin therapy prevented. Also, melatonin elevated both L-arginine and ADMA but reduced L-citrulline level in the kidney in SHR, which was associated with the prevention of reduced renal argininosuccinate lyase (ASL) expression in SHR. Moreover, melatonin reduced the degree of oxidative damaged DNA product, 8- hydroxydeoxyguanosine (8-OHdG) immunostaining in SHR. The observed antihypertensive effects of melatonin in young SHR are because of the restoration of the NO pathway by reduction of plasma ADMA, restoration of plasma AAR, preservation of renal L-Arg availability, and attenuation of oxidative stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call