Abstract

In Teleost fish, development, growth, and reproduction are influenced by the daily and seasonal variations of photoperiod and temperature. Early in vivo studies indicated the pineal gland mediates the effects of these external factors, most probably through the rhythmic production of melatonin. The present investigation was aimed at determining whether melatonin acts directly on the pituitary to control GH and prolactin (PRL) secretion in rainbow trout. We show that 2-[125I]-iodomelatonin, a melatonin analog, binds selectively to membrane preparations and tissue sections from trout pituitaries. The affinity was within the range of that found for the binding to brain microsomal preparations, but the number of binding sites was 20-fold less than in the brain. In culture, melatonin inhibited pituitary cAMP accumulation induced by forskolin, the adenyl cyclase stimulator. Forskolin also induced an increase in GH release, which was reduced in the presence of picomolar concentrations of melatonin. At higher concentrations, the effects of melatonin became stimulatory. In the absence of forskolin, melatonin induced a dose-dependent increase in GH release, and a dose-dependent decrease in PRL release. Melatonin effects were abolished upon addition of luzindole, a melatonin antagonist. Our results provide the first evidence that melatonin modulates GH and PRL secretion in Teleost fish pituitary. Melatonin effects on GH have never been reported in any vertebrate before. The effects result from a direct action of melatonin on pituitary cells. The complexity of the observed responses suggests several types of melatonin receptors might be involved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.