Abstract

Formation of new neurons and glial cells in the brain is taking place in mammals not only during prenatal embryogenesis but also during adult life. As an enhancer of oxidative stress, ionizing radiation represents a potent inhibitor of neurogenesis and gliogenesis in the brain. It is known that the pineal hormone melatonin is a potent free radical scavenger and counteracts inflammation and apoptosis in brain injuries. The aim of our study was to establish the effects of melatonin on cells in the hippocampus and selected forms of behaviour in prenatally irradiated rats. The male progeny of irradiated (1Gy of gamma rays; n=38) and sham-irradiated mothers (n=19), aged 3weeks or 2months, were used in the experiment. Melatonin was administered daily in drinking water (4mg/kg b. w.) to a subset of animals from each age group. Prenatal irradiation markedly suppressed proliferative activity in the dentate gyrus in both age groups. Melatonin significantly increased the number of proliferative BrdU-positive cells in hilus of young irradiated animals, and the number of mature NeuN-positive neurons in hilus and granular cell layer of the dentate gyrus in these rats and in CA1 region of adult irradiated rats. Moreover, melatonin significantly improved the spatial memory impaired by irradiation, assessed in Morris water maze. A significant correlation between the number of proliferative cells and cognitive performances was found, too. Our study indicates that melatonin may decrease the loss of hippocampal neurons in the CA1 region and improve cognitive abilities after irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.