Abstract

BackgroundAccording to former research, the atherosclerotic plaque is thought to be aggravated by intraplaque neovessels (IPN) and intraplaque hemorrhage (IPH). Intriguingly, a lower incidence of IPH was found in plaque treated with melatonin. In this study, we attempted to investigate the impact and underlying mechanism regarding the influences of melatonin upon IPN. MethodsA mouse model was established by subjecting the high fat diet (HFD)-fed ApoE−/− mice to tandem stenosis (TS) surgery with melatonin and GW9662, a PPARγ antagonist, being given by gavage. In vitro experiment was conducted with HUVECs exposing to according treatments of VEGF, melatonin, GW9662, or Y27632. ResultsPlaque and IPN were attenuated by treatment with melatonin, which was then reversed by blocking PPARγ. Western blotting results showed that melatonin increased PPARγ and decreased RhoA/ROCK signaling in carotid artery. Elevated RhoA/ROCK signaling was observed in melatonin-treated mice when PPARγ was blocked. In accordance with it, experiments using protein and mRNA from HUVECs revealed that melatonin inhibited the RhoA/ROCK signaling by enhancing PPARγ. According to in vitro study, melatonin was able to inhibit cell migration and angiogenesis, which was aborted by GW9662. Blockage of ROCK using Y27632 was able to cease the effect of GW9662 and restored the suppression on cell migration and angiogenesis by melatonin. ConclusionsOur study demonstrates that melatonin is able to curb development of plaque and IPN formation by inhibiting the migration of endothelial cells via PPARγ- RhoA-ROCK pathway. That provides a therapeutic potential for both melatonin and PPARγ agonist targeting IPN, IPH, and atherosclerotic plaque.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.